PHYSICAL REVIEW E

VOLUME 49, NUMBER 4

Phase diagram for excess electrons in simple fluids

Kevin Leung and David Chandler
Department of Chemistry, University of California, Berkeley, California 94720
(Received 12 October 1993)

We analyze a model for a thermally equilibrated electron in a static disordered environment. The
model provides a caricature of excess electrons in simple liquids. We show that the self-consistent
Gaussian approximation to the model can be treated analytically in the different limits of weak
and strong coupling to the disorder. In cases of strong coupling, the treatment predicts electron
localization consistent with Lifshitz trap scaling. This behavior can be the result of either excluded
volume interactions or attractive interactions between the electron and the random sites (i.e., atoms)
in the system. In the former case, the Lifshitz traps are voids; in the latter, they are local regions
with atomic density in excess of the mean. In the case of weak coupling, the electronic behavior is
dominated by extended states, and our treatment is consistent with standard perturbation theory.
The theory thus correctly interpolates between different regimes. As a result, it provides a means to
examine the competition between different electron-solvent interactions, and the resulting changes
from one regime to another. We derive a phase diagram for the regions of crossover between weak
coupling and strong coupling. The phase diagram is of a re-entrant form where the weak-coupling
regime can result from a competition between repulsive and attractive interactions. Within this
regime, over a narrow range of atomic densities, it is shown that the electron mobility can be
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extremely high.

PACS number(s): 61.20.—p, 71.10.+x, 71.25.Mg, 71.55.Jv

I. INTRODUCTION

The remarkably varied behavior of excess electrons in
simple liquids has attracted attention, both experimen-
tally [1,2] and theoretically [2,3]. In this paper, we an-
alyze a model that can explain many of the qualitative
observations. The self-consistent Gaussian approxima-
tion to the model coincides with a theory presented sev-
eral years ago [4]. Several numerical applications of this
theory have been made to interpret the structure and
mobility of excess electrons in nonpolar and polar lig-
uids [5-13]. The current paper provides an analytical
treatment. We predict a phase diagram for the crossover
between regions of high electron mobility (dominated by
extended states) and regions of low mobility (dominated
by localized states). Much of what we have to say per-
tains to the general problem of a quantal particle coupled
to static disorder.

We assume that an electron couples to a liquid of sim-
ple closed shell atoms or molecules through a local pseu-
dopotential field. This field is irregular due to the disor-
dered arrangements of atoms in such a system. Closed
shell atoms will repel excess electrons, due to the exclu-
sion principle. They may also attract excess electrons,
due to polarization. As such, the potential landscape for
the electron can have regions of high energy, nearly im-
penetrable to the excess electron, and it can have other
regions of low energy that attract the electron.

Irregularity throughout the landscape will cause low
energy states of an excess electron to be localized. This
is the case of strong coupling that will necessarily dom-
inate the behavior of excess electrons at sufficiently low
temperatures. The opposite regime of low coupling dom-
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inates the behavior at high temperatures. We develop
in this paper an analytical treatment of both the strong-
coupling and weak-coupling regimes. We also describe
how in certain cases, the effects of the repulsive and
attractive interactions compete and cancel each other.
This cancellation phenomenon has often been cited as the
cause of high electron mobilities in some of the rare gas
fluids [2,10,14]. It is also known in other contexts. For
example, the phenomenon gives rise to the Ramsauer-
Townsend effect in two body scattering [15]. It also pro-
vides the mechanism for extended states and conductiv-
ity in the random dimer model [16].

Experiments on excess electrons in liquids are per-
formed at finite temperatures. Therefore, our theoretical
analysis is carried out in the canonical ensemble. In the
microcanonical ensemble, there is a clear demarcation
between extended and localized behavior as a function
of the energy of a single electron. The microcanonical
diffusion constant, for example, is zero for those ranges
of energy where states are localized, and it is nonzero
for those energies where states are extended. (Equiva-
lently, there are well defined localization transitions for
a zero temperature many body system of noninteracting
electrons as a function of chemical potential.) For a ther-
mally equilibrated excess electron, however, observables
exhibit smeared manifestations of such transitions.

Even at finite temperatures, a liquid environment is
static in as much as the liquid atoms move much slower
than do the electrons. Electron localization occurs only
to the extent that the solvent is not dynamic. In the
treatment we follow, the liquid exhibits no dynamics. In
other words, the extreme adiabatic approximation is em-
ployed. This static model of liquid disorder is a reason-
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able approximation for nearly all nonpolar liquids. The
diffusion constants for the slowest electrons in such sys-
tems are typically 10% times those of the solvent atoms.
The exception is liquid helium at temperatures below 5
K, where the electron diffusion constant approaches that
of the helium atoms. In that case, a significant mecha-
nism for diffusion of the electron is provided by the mo-
tions of the surrounding atoms. Above those low tem-
peratures, and for other nonpolar liquids, the so-called
“bubble states” are effectively stationary. Diffusion of
the electron is due primarily to diffraction made possible
through access to extended states.

The model and the self-consistent Gaussian approxi-
mation we use to analyze the electronic behavior caused
by static disorder is presented in Sec. II. The analysis
of the theory is generally complicated, requiring some
degree of numerical computation. In the limits of weak
and strong coupling, however, the analysis can be done
analytically. We demonstrate the analytical treatment
in Sec. III where we consider only the effects of random
exclusion. The crossover between the two regimes is lo-
cated approximately, by extrapolating from those limits.
In Sec. IV, we consider the cases where both attracting
and excluding interactions are present. Here, a phase di-
agram is predicted in which the boundary between weak
and strong coupling is of a re-entrant form. The weak
coupling arises from a cancellation between attractions

J

and repulsions. A brief summary and a discussion of the
limitations inherent to our model are given in Sec. V. Ap-
pendices provide several of the mathematical steps omit-
ted from the main text.

II. THEORY

A. The model

We imagine an electron coupled to a liquid through a
very simple pseudopotential. This potential expels the
electron from distances closer than some length, I, to the
center of any atom in the liquid. Outside these excluded
regions, the electron may be attracted to atoms with a
pair potential u(r). The pseudopotential is intended as
a caricature, valid for reasonably low energies and rea-
sonably long length scales. For such circumstances, the
atomic density, p(r), provides a convenient description
of liquid configurations. This quantity is a random field.
We assume that the resulting disorder is quenched (i.e.,
adiabatic) on the time scale of the electron’s diffusive mo-
tion. Further, we assume that electrons are uncorrelated
to each other and are equilibrated to the disorder.

As a result of these assumptions, the appropriate gen-
erating functional is the single electron partition function

z=e# = [Defr] [Dp®) PLR)] ] é[p(R'nexp{so[r(r)]—% / " / dRp(R)u[r(T)—R]}-

IR'—r(7)] <l

In the above equation, P[p(R)] denotes the probability
distribution functional for the density fields of the pure
liquid solvent, r(7) is the position of the electron along
the imaginary-time path at imaginary time 7, and the
product of § functions ensures that there is no solvent
density within the distance of closest approach of the
cyclic electron path r(7), 0 < T < Bh;

(2.2)

is the Euclidean-time action of a free electron, and m, is
the electronic mass. The quantity Ay = 37 'InZ is the
chemical potential or excess free energy of an electron
in the fluid. The path integration differential, Dr(7),
includes a constant such that Ay —» 0 as p —» 0. In
other words, the chemical potential reference state is the
electron uncoupled from the solvent.

Equation (2.1) is an expression for an equilibrium or
annealed partition function. Electrons equilibrated to
quenched or static disorder obey the principle of self-
averaging. As such, it can be shown that for uncor-
related electrons in the thermodynamic limit, quenched
averaging is equivalent to annealed averaging [17]. The
partition function associated with annealed averaging,

(2.1)

Eq. (2.1), is easier to evaluate than that for quenched
averaging. Thus, Eq. (2.1) is the appropriate partition
function based upon both principle and convenience.

This strategy is satisfactory for the treatment of both
structural and dynamical properties of independent elec-
trons equilibrated to classical liquid disorder. The pro-
cesses leading to equilibration, however, involve inter-
play between electronic and liquid dynamics [18]. This
nonequilibrium relaxation is beyond the scope of the
static liquid model we adopt.

Our focus is on the region where the thermal wave-
length of the electron

A= +/Bh?/m,

far exceeds all other relevant length scales, including the
correlation length of the liquid disorder. At long enough
length scales, the statistics of the solvent density is Gaus-
sian. Owing to the large value of A, we assume a Gaussian
description is reasonable at all pertinent scales. Hence,
the disorder is characterized by the averaged density, p,
and the second moment,

(8p(r)dp(r')) = x(Ir — r'l). (2.3)
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Given this assumption, the partition function [Eq. (2.1)]
and the implied correlation functions can be estimated
from results of the Li-Kardar method [19]. That proce-
dure can be carried through in the I — 0% limit [20].
Extrapolating to finite ! gives

plg(r) — 1] = w x cx x(r), (2.4)
where
g(r) =0, r <, (2.5)
and
e(r) = —Bu(r), r > L. (2.6)

Here, pg(r) is the average density at r given an electron
is at the origin, * denotes convolution in real space, and
w(r) is the time-averaged correlation function between
two points on the electron path:

Bh
w(lr|) = %/0 dr (§(r — r(7) + r(7"))). (2.7)

Equations (2.4)—(2.6) are derived neglecting deviations
of the electron pair structure from its average, (6(r —
r(7)+r(7'))). See Ref. [20]. One requires a self-consistent
theory to determine this correlation function.

B. Self-consistent Gaussian treatment

Equations (2.4)—(2.6) are consistent with

7~ / Dp(R) P[o(R)] / Drir] exp{Sa[r()]

Bh
+%/0 dr/dRp(R)C(r(T)—R)}

= [Drnexp(Sa I+ SO (28)
where
sife(r)) = i0) — 5 [ 5 M (Mdr ZroE = <),
(2.9)
and
o(r) = —cx x % c(r) (2.10)

is the influence functional potential. Equations (2.8)-
(2.10) provide a partition function from which (§(r —
r(r) + r(r'))) can be computed. To arrive at self-
cousistency, we enforce the condition that the resulting
w(r) gives [via Eq. (2.4)] an expression for ¢(r) which is
consistent with it.

The influence functional in Eq. (2.9) resembles that
which Feynman obtained by integrating out the dynami-
cal phonon bath present in the Fréhlich Hamiltonian [21].
Unlike Feynman'’s case, however, the influence functional
couplings, v(r), are independent of time and hence long

ranged in time. Also unlike Feynman’s case, v(r) is not
only a functional of the electronic environment. It de-
pends as well upon the electronic structure. These fea-
tures arise, respectively, from the static nature of the dis-
order and the nonlinear nature of the model we consider.
They lead, as we show below, to manifestations of local-
ization. It is well known and our results are consistent
with the fact that localization is different in important
ways from polaronic self-trapping. The latter is caused
by coupling to a dynamical phonon bath. Despite the
differences, the analysis we provide establishes a useful
analogy between localization in a static medium and the
behavior of polarons.

To compute the thermal averaging, we follow Feyn-
man’s variational approach [21] and minimize the excess
chemical potential through first order in AS[r(7)], i.e.,

ﬁAﬂ' = /BAI-"ref - (As[r(T)])ref,

with respect to the most general Gaussian influence func-
tion

(2.11)

Z YalTal?,

Sret[r(T)] (2.12)

where

AS[r(r)] = Silr(r)] - Seutlr(r)],

1 [P

ﬁfo dr r(7) cos(Qn7),

Q,, is the Matsubara frequency 27n(8A)~1, and {v,} is
an infinite set of variational parameters. With this refer-
ence action, our variational treatment is also equivalent
to setting to zero the first order correction to the mean
square:

(Il‘n12>(1) = (lrn|2AS[r(T)])ref - (lrnlz)ref(AS[r(T)Dref
=0.

Tn =

The results of the optimization are [4]

3
By 2.13
(eal®) = g o (213)
and
1 [P
Tn = ~on ), dr (1 - cosQ,T)

x /0 " dk ko (k) exp—k%E()].  (2.14)

Finally, w(r) in Eq. (2.7) is computed using this reference
action to give

Bh
o(k) = Elfi /0 dr exp[—k?¢()), (2.15)

where

&(r) = R*(1)/8, (2.16)

and
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R*(1) = <|l‘(T) —r(0)[*)
cos(Q 'r)
B 122 BmeQZ + v

Equations (2.4)—(2.6), (2.13)—(2.17) are solved self-
consistently [22]. Approximate analytical methods used
to solve this set of coupled integral equations are given

in Sec. III and are discussed in more detail in Appendix
A.

(2.17)

C. Real time dynamics

The solutions to these equations, as we will show, yield
a variety of behaviors. When dominated by localized
low energy states, the electron is hardly mobile. On the
other hand, it is possible for the electron to couple weakly
to the liquid, even when the bare pseudopotentials seem
appreciable. In that case the electron diffuses rapidly. To
analyze these real time behaviors, one may analytically
continue the imaginary time Egs. (2.13)- (2.17) [8]:
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FIG. 1. Contours in the complex time plane used in Egs.
(2.19) and (2.22). The dashed lines (C; and C-) are the con-
tours used in Eq. (2.19) and the solid lines (C3, C4, and Cs)
run through the lines along which g (¢) is real.

1 oo
0-(0) = gz [ dbRS (D) expl-kE (1)), (220)
0
where T is the time-ordering operator and the contours
C: and C, are shown in Fig. 1. The diffusion constant is

given by
(2.21)

Equation (2.19) involves integrating over a complex con-
tour. Since £ (t) is analytic on the strip bounded by
0 < Imt < pBh, we may distort the contour onto
Cj5. &5 (t) is real along C3, and this procedure minimizes
oscillations in the integrals. Equation (2.19) becomes

£(t) = 3 (TIe() — x(O)?)
1 [ A
= —;/0 dw Im (Bh/[Bmew? + 4(w)))
x[coth(Bhw/2) (1 — coswt) + isinwt], (2.18)
) = =g [ (1= im0
= _iﬁiﬁ { ; dt (1 ~ei“"t)g>(t)
+ /02 dt[1 — e‘ﬁ"‘“+i“"]g>(t)}, (2.19)
and
}
o) =~ [ L -0 - [ (1—e-ﬂ"“+”f>g>(t)]

2. Bhw [ iwt g _@ ﬁh/zd oshwr — 1)g< (—i ]
_—ﬁ[zsmh( 5 )/0 dte*tg- (t )+ /0 7 (coshwt — 1)g> (—i7) |.

These equations couple low and high frequency motions.
The full solution is prohibitive, though we will discuss
how approximate methods can be used to analyze it.

This theory of uncorrelated electrons in liquid mat-
ter (or disordered matter in general) is based upon older
theories of solvation, principally the reference interaction
site model (RISM) [23]. Due to this connection, and due
to the analogy with Feynman’s treatment of the polaron
problem, the theory has been called the RISM-polaron
theory [4-13].

(2.22)

III. EFFECTS OF EXCLUDED VOLUME
INTERACTION

In this section we consider the model for the case where
the attractive potential tail, u(r), is zero. Only exclusion
forces remain between the electron and fluid particles.

The quantity R(B8A/2) obtained from Eq. (2.17) is a
measure of the physical size of the thermal electron. In
Figs. 2 and 3, we examine this quantity as computed
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numerically from Eqgs. (2.4)—(2.6) and (2.13)—(2.17). We
model the solvent as hard spheres with the Percus-Yevick
structure factor [24] for x(r), and we take [ = 0.50. The
plots indicate the occurrence of two distinct types of be-
havior. At small A, R(B%/2) takes on the scaling form of

a free electron,
3
Y A

As ) increases, R((h/2) experiences a crossover and then
assumes a different functional dependence with A\. We
call the regions of phase space associated with the two
distinct types of behavior the weak-coupling and strong-
coupling regimes, respectively. In the case of helium,
for example, the crossover occurs at physically realizable
temperatures. In particular, with ¢ = 2.6 A (a reason-
able atomic diameter for helium), A = 250 implies T ~ 22
K, whereas at A = 500, T is down to approximately 5.4
K. The liquid-gas critical temperature for helium is about
5 K. At the temperatures and densities considered in Fig.
2 and 3, the classical Percus-Yevick model of that fluid
is an accurate enough caricature.

One sees from Fig. 2 that, in the crossover region, the
electron size is a nonmonotonic function of temperature.
This behavior could be studied experimentally for elec-
trons in gaseous supercritical helium, perhaps through in-
frared absorption spectroscopy [25]. The nonmonotonic
behavior has been observed numerically in the context
of an isomorphic problem—the behavior of freely-jointed
polymers equilibrated to a system of random quenched
obstacles. The polymer mass N in that case coincides
with A% or 3 in the current case. A qualitative under-
standing of the crossover region can be derived by ex-

20.0 | ,‘ |
\ ; ‘
p*=0.0 /
’/
15.0 ¢ / p*=0.05 ]
/
= / —
s / *=0.075
I ‘ l p N ' = =
& ,/:// \\\ . R '. ____q_.._-._--“-“““
4 e
‘// p*:o 1
5.0 + |
0.0 . ‘
0.0 25.0 50.0 75.0
Ao

FIG. 2. R(Bh/2) as a function of A: p* = po® = 0.05 (solid
line), 0.075 (dashed line), and 0.1 (long-dashed line). In each
case, | = 0.50. The abbreviated lines are the asymptotic
results from Eq. (3.12).
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FIG. 3. R(BAh/2) as a function of p at I = 0.50. A/o = 60
(solid line), 40 (long-dashed line), and 20 (dashed line).

trapolating from the two asymptotic regimes. Figure 3
plots R(B%/2) vs p and shows that (a) R(6%/2) is an in-
creasing function of ) in both asymptotic regions; and (b)
the crossover point shifts to lower densities as A increases.
From these facts we deduce there must be crossings be-
tween different isotherms as p varies, and such crossings
lead to the nonmonotonic behavior shown in Fig. 2. The
location of the crossover region can be estimated by ex-
trapolating from asymptotic results, as will be estimated
shortly.

A. Weak-coupling regime

For purely excluded volume interactions, the extent
of electron-solvent scattering increases with density. At
low enough solvent density, high enough temperature,
or small enough [, one expects the thermal electron to
resemble a free quantal particle. In that weak-coupling
case, £(7) assumes the form

A7 T

Nichols and Chandler [8] have derived expressions for c(r)
for such a quasifree thermal electron in the ideal gas limit.
We extend this calculation to the case for non-trivial sol-
vent structure. In Appendix B, we argue that, for large
enough ), it is sufficient to write

(3.1)

c(r) = csé(r — d) /anr?, r < |, (3.2)

just as in Ref. [8]. With this form for ¢(r), we show in
Appendix A that

wpAZl

ﬂAl‘N 2K

(3.3)
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where

2 [ . sinkl) 2
== dk
K wz/(, S(k)( 2 ) ,

with S(k) = x(k)/p denoting the fluid structure factor.
For the hard sphere model of the solvent, K < 1, de-
creases with solvent density p, and approaches unity in
the ideal gas limit.

In the ideal gas limit, Eq. (3.3) has the functional form
of the Springett-Jortner-Cohen expression [26] based on
the Wigner-Seitz theory [27], for excess electrons in in-
finitely dilute hard sphere fluids,

(3.4)

BApws = 27rﬁh2plwsme_1, (3.5)

provided that the scattering length of the electron-
solvent pseudopotential lws is proportional to the dis-
tance of closest approach . In this weak-coupling regime,
the chemical potential of the excess electron is system-
specific and increases monotonically with /. Its propor-
tionality to pA2l is easily understood as A% ox 3 is propor-
tional to the number of units on the isomorphic polymer,
and [ is the only other relevant length scale in the small
p limit.

B. Strong-coupling regime—Lifshitz traps

With strong coupling to disorder, a different behavior
is found. In particular, we show that in this case, excess
electrons favor cavities containing low solvent density. In
such cavities, known as Lifshitz traps [28], one expects

BAp ~ Bch?/m.R* + bpR<,

where ¢ and b are of order unity, and R ~ R(BA/2) is the
typical distance across a cavity. The first term in this
estimate of BAp is a kinetic energy contribution. The
second term arises from the free energy cost to create a
void of volume R? in the fluid. It is athermal. Balancing
both terms gives

R ~ (B/p)"/ 4+, (3.6)

This well-known phenomenological argument predicts
that the optimal cavity size R scales as T-1/5 at low
temperatures in three dimensions. Such scaling behav-
ior has been derived with microscopic methods by Lut-
tinger et al. [29-31] in the case of random uncorrelated
short-ranged repulsive scatterers. In the strong-coupling
limit, the RISM-polaron theory [Eq. (2.4)—(2.6), (2.13)—
(2.17)] reduces to an analytically tractable form yielding
Lifshitz’s results as well.

We begin by assuming the dominance of ground states,
as is appropriate for large enough A. In that case, £(7) is
independent of 7, except for 7 very close to 0 (or Bh) [32].
As such we use the following ansatz with only one varia-
tion parameter, a:

6(7‘)=a2{1—exp|:—§;1%—i <1—é)” (3.7)

This expression reduces to the free electron form at small
7 and approaches a plateau value a at intermediate 7.
We anticipate, and will show that, for large A, a is much
larger than all microscopic length scales and at the same
time small compared to A. In that case, &(7) = £(BR/2)
for nearly all 7, and

R*(Bh/2) = 6¢(Bh/2)

= 6a’.

We also use Eq. (3.2) for ¢(r), as is justified in Appendix
B. As discussed in Appendix A, solving Egs. (2.4)-(2.7)
with the above approximations gives, to lowest orders of

(l/a) and (o/a),

. . -1
&(0) = —87%/28(0)"1a? [1 +8y7Kad® / 5(0),\21] .
(3.8)
In addition, it follows from Egs. (A9) and (A10) that

3)2
ﬁAﬂref + (Sref[r(T)Dref = W (39)
Substituting Egs. (3.7), (3.8), and (3.9) into
Eq. (2.9), (2.10), and (2.11) gives
2A (a) =0 3.10
g Apl(a) =0, (3.10)

with

Au(a) = [47%/2pS(0)~1a®|[1 + 8y/mKa®/S(0)A%])
+g. (3.11)

The result is a sixth-order polynomial equation in a:
1673/2pa’®/5(0)A% — [1 + 872K a®/S(0)A%)? = 0.
(3.12)
Real solutions exist when
5’(0)”1/2p_3/4K5/4l_5/4/\’1
< 55/471/29=9/43-3/2 (= 0,536...). (3.13)

For large ), there is a unique asymptotic solution, given
in Eq. (3.14) below. The smallest real root of Eq. (3.12)
coincides with this solution. The smallest real root of
this equation therefore gives the physical solution for a,
and it is accurate away from the crossover region of the
phase diagram, as is shown in Fig. 2.

By retaining only the lowest order terms in (a/}),
Eq. (3.12) gives a slightly generalized Lifshitz trap scaling
behavior:

1/2,.—-3/10 o _ 1/5
R = V6a ~ 6—752— [2S(O)A2/p] , (3.14)
and
5 Al —
BOu ~ 5 (2m)¥/5p/38(0) oA, (3.15)

The generalization is the involvement of 5(0). For un-
correlated disorder, $(0) = 1. Notice that the distance
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of closest approach [ does not appear in the asymptotic
expression, but only enters into higher order corrections.
This universal behavior is a consequence of large cav-
ities dominating the low energy states of the electron.
For large cavities, the effect of the electron-solvent inter-
action is felt only at the surface of the cavities and be-
comes negligible compared to the bulk term. The temper-
ature dependence of Eq. (3.15) is particularly notewor-
thy. Specifically, BAp is not a linear function of inverse
temperature. Its fractional dependence, going as A%/% in
three dimensions, is a manifestation of the characteristic
distribution of localized ground states for systems with
disorder of finite correlation length and bounded lowest
value of potential energy.

For a quantitative comparison, Luttinger et al. [29-31]
calculated asymptotic results for an ideal gas which scat-
ters the electron with a short-ranged, repulsive pseudopo-
tential. (Specifically, in Ref. [31], they consider a repul-
sive power-law potential that decays faster than 1/r5.)
Their excess chemical potential scales with p and A in
the same way as the one we have derived using an effec-
tive partition function, Eq. 2.8, but the numerical values
differ by a factor of 2.5:

ﬁAﬂLut ~ 2(4%4)p2/5)\6/5 +O(/\4/5),

A p73/478/4, (3.16)

C. Crossover

The results of the previous two subsections demon-
strate that the RISM-polaron theory is qualitatively cor-
rect in both limiting regimes. The strong-coupling regime
prevails at a given temperature and solvent density if
its excess chemical potential is lower than that of weak-
coupling behavior. We compare these two excess chemi-
cal potentials given respectively by Egs. (3.3) and (3.11)
to obtain the crossover line, expressed as A.(p.). The
result is

pl?Ac ~ 3%/%(2m)~1/25(0) "2 pl/AKS/A3/4, (3.17)

This expression is somewhat different from what is ob-
tained by locating the crossover point from the temper-
ature and density at which the ratio of A to the mean
free path, p~1£~2, reaches a threshold value. This “semi-
classical” estimate yields p.A. ~ const. The correlation
effects accounted for in arriving at Eq. (3.17) lead to a
more complicated density dependence for the threshold
to localization. A

The competition between the factors of S(0) and K in
Eq. (3.17) is significant. The factor K partially counter-
acts the effect of the bulk compressibility and can keep
the strong-coupling regime favorable at high densities,
even though S(0) is small in that regime. The crossover
boundaries for several values of ! obtained from Eq. (3.17)
are shown in Fig. 4. In our model, for the range of pa-
rameters we have considered, increasing p always leads
to stronger tendency of self-trapping [33]. The line pre-

10° ) T T
strong—coupling
10?
5
N
<
10
weak—coupling NS
1=0.5¢
100 1 L n
1072 107" 10°
p*

FIG. 4. Phase boundaries for pure excluded volume inter-
action: !/o = 0.3 (solid line), 0.4 (long-dashed line) and 0.5
(dashed line). The lower left portion of the phase diagram
is the weak-coupling regime and the upper right part corre-
sponds to the strong-coupling regime.

dicted by Eq. (3.17) lies very close to the lower turning-
points of the numerical curves exhibited for example in
Fig. 2.

IV. EFFECT OF ATTRACTIVE INTERACTION

A system with randomly placed sites that strongly at-
tract (rather than repel) an electron forms Lifshitz traps
of a different sort than those considered in Sec. III. These
alternative traps are regions in which many strong attrac-
tors cluster. Points in space where they do not cluster
will be locations of relatively high potential energy for
the electron. Hence, the lowest energy electrons will be
located in regions where the largest clusters of attrac-
tors reside. The phenomenological argument leading to
Eq. (3.6) can be carried through for the case of strong
attractors. The result is the same, except in this case in
place of solvent concentration, p, one has a void concen-
tration. The behavior of Lifshitz traps in the presence of
strongly attracting particles therefore has roughly a mir-
ror symmetry with that for Lifshitz traps in the presence
of excluding particles.

With this symmetry in mind, consider systems where
the randomly arranged particles possess both and ex-
pelling core as well as an attractive pseudopotential tail.
If the expelling radius is small, and the attractive poten-
tial is deep, the system would create Lifshitz traps of the
attracting type—we shall call them “cluster” states. On
the other hand, if the attractions are weak, the exclusion
will dominate, and the low energy electron will fill voids
in the material—the Lifshitz trap “cavity” states ana-
lyzed in the previous section. The cluster state and the
cavity state are different structures. One therefore ex-
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pects that as the pseudopotential attraction is changed
continuously from weak to strong, an intermediate regime
will occur where the electron is neither associated with
clusters nor voids. Such a situation would be a form of
weak coupling. Indeed, we derive in this section a phase
diagram with two distinct types of strong-coupling phases
separated by a weak-coupling phase. The weak coupling
arises from a cancellation between the attractive inter-
actions and the exclusion forces. When this cancellation
occurs, the electron mobility is very high.

To reach these results, we consider now the case where
the attractive pseudopotential, u(r), is no longer zero.
We analyze first the weak-coupling regime, and then the
strong-coupling regime. The crossover phase diagram we
have just described is estimated as in Sec. III, by ex-
trapolating the free energies of the two extremes to the
points of intersection.

A. Weak-coupling regime

We again use Eq. (3.1) for {(7) and solve for ¢(r) as a
functional of u(r). The results (see Appendix A) are:

BAu = ”gI’\: L4 BUPR + 0G24 pBa(0).  (41)
where

BU = 73% dk (k) S (k )S"I:lkl, (4.3)

G= —ﬂf; /ow dk (k)25 (k), (4.4)

and K is defined in Eq. (3.4). Since \? x 8, U, B, G,
and K are all independent of temperature. The chemical
potential (4.1) differs from (3.3) in three ways. The last
term in Eq. (4.1) is the mean field attractive energy be-
tween the electron and the unperturbed bulk fluid. The
second term is a reaction-field correction that is usually
small. These two contributions are present even for = 0,
i.e., when no excluded volume interaction is present.
The remaining difference involves the first term in Eq.
(4.1). It is similar to but larger than the chemical poten-

J

BAp ~ 4m*/2pS(0) "1V p; u(r))?a®

5(2 3/5 R B
— ( 7;) p2/55(0) 2/5|V[p;u(r)]|4/5/\6/5 _

It reduces to Eq. (3.15) when & = 0. On comparing
Eq. (4. ) with Eq. (3.15), one sees that the first term,
of O(A8/%), is responsible for the Lifshitz-like scaling of
the electron size. The terms proportional to the inverse
temperature, 3 ~ A2, can be viewed as simply shifting
the “zero” of energy with respect to the pure excluded
volume case.

L M(1+ BUYU —
+ gz TP (1+ BUY)

TpA2l 2 2
e Vip; u(r)] + 7 e (1+ BU)

tial of the pure excluded volume interaction case at weak
coupling. The extra factor of BUY can be interpreted as
an additional restoring force that is renormalized into the
short-ranged part of the effective coupling ¢(r). This in-
creased repulsive interaction comes about because the at-
tractive forces draw the electron and solvent atoms closer
together than when that force is absent. Equation (4.1)
is different from the results of Springett-Jortner-Cohen
theory. It results from a self-consistent treatment of the
short-ranged excluded volume interaction and the longer-
ranged attractive part of the pseudopotential in the pres-
ence of the liquid. The effective scattering length that
results is density dependent.

B. Strong-coupling asymptotic results

For strong coupling to disorder, we again assume
ground-state dominance at low temperatures [Eq. (3.7)]
and carry through the calculations as before. In Ap-
pendix A we show that a is obtained by solving another
polynomial equation, Eq. (A12), and that the chemical
potential is given by Eq. (A11). To leading order in
(a/X), Eq. (A12) gives

R 1/5
e <2S(O)A2> Vipsu(r)] 25, (4.5)
2 p

where

V[p;u(r)] =1+ (B - K)U (4.6)

is temperature independent. In other words, we predict
that the electron size scales the same way with temper-
ature as in the case for purely repulsive scatterers, but
the coefficients, even to leading order in A, are function-
als of u(r) and are not universal. This behavior follows
from the fact that solvent atoms exist in the vicinity of
the electron whenever i > 0, in contrast to the case of
pure excluded volume interaction where the electron re-
sides in a cavity and the electron-atom pseudopotential
contributes only to surface terms. These structural dis-
tinctions are quantified in the next subsection.

At large ), the chemical potential, Eq. (A11), has the
asymptotic form

7rp)\ lKU2

mpAZl

pGA? + pBi(0)

+ pGA? + pBi(0). (4.7)

C. Phase diagram and distinct strong-coupling
phases

The condition for strong coupling follows from compar-
ing Eq. (4.1) and Eq. (All) in Appendix A. It is given
by
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pclec > 33/2(2")—1/23(0)—1/2’)‘1:/4
x|Vlps u(r)]| "2 K414, (4.8)

This condition reduces to Eq. (3.17) in the case of purely
excluded volume interaction.

Since u(r) is finite, though discontinuous at r = I,
i(k) ~ 1/k?. This decay is much faster than that of the
Fourier transform of the ¢(r) § function. As a result, for
reasonable u(r)’s and S(k)’s,

BU = dk——) A

WU [ sinkl\? ,
- k)= KU.
_ﬂlodk(k)S() U

_u ?Elg) sin ki 3(k)

™ Jo

Hence, V[p;u(r)] decreases smoothly with increasing
strength of the attractive potential U, passes through

zero and eventually changes sign, and its absolute value

first increases and then decreases with increasing Y.

On the other hand, Eq. (4.8) states that small
|[Vi[p; u(r)]| favors the weak-coupling regime, whereas
large values favor strong-coupling behavior. As a result,
at large ), p, and/or [, the system crosses over from the
strong-coupling phase we studied in Sec. III to the weak-
coupling regime. This crossover occurs in the neighbor-
hood of densities where V[p;u(r)] = 0. Therefore, the
system exhibits a re-entrance into the strong-coupling
regime as U increases from zero. Such crossover bound-
aries, obtained from Eq. (4.8), are illustrated in Fig. 5. In
accordance with the physical argument given at the be-
ginning of Sec. IV, we expect the strong-coupling phase
with small U to be dominated by cavity states; and we
expect the strong-coupling phase with large ¢ to be dom-

40.0

strong—coupling
(bubble or cavity)
20.0 i

0.0 k weak—coupling 1

-20.0 r

K5/605/6 )23 (p; u(r))

strong—coupling

(cluster)
_40.0 L 1 ' 1
0.0 0.2 0.4 0.6 0.8 1.0
p‘

FIG. 5. Phase boundaries with both excluding and attract-
ing interactions, expressed in terms of K%/815/6A%/3V)|p; u(r)]
as a function of po®. The upper and lower branches corre-
spond to the boundaries separating the weak-coupling from
the bubble and cluster state.

inated by cluster states.

The distinction between the two strong-coupling
regimes is illustrated by the electron-solvent pair corre-
lation function

hes(r) = g(r) — 1. (4.9)

In Fig. 6 we take u(r) to be a simple, truncated charge-
induced dipole interaction

u(r) = —ae?/2r, r > 1,

where a is the renormalized polarizability of the solvent
atoms and e is the electronic charge [34]. With this

1.0 T T v

0.5
=
\ﬁ 0.0
<

-0.5 t+

-1.0 n L "
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-1.0 - - :
0.0 2.0 4.0 6.0 8.0

/0
FIG. 6. hes(r) vsr for cases where ! = 0.290: U = 7.6 (solid
line), 3.8 (long-dashed line), and 0 (dashed line). Panels (a)
and (b) are for po® = 0.3 and 0.7, respectively.
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potential, we plot numerically computed hes(r) at var-
ious values of Y. The distance of closest approach [ is
0.290 and A = 200. At small U, the excluded volume
interaction dominates and we observe depletion of sol-
vent density around the excess electron. As U increases,
the “correlation-hole” disappears and the solvent effec-
tively decouples from the electron, becoming transpar-
ent to it. At large U, the local solvent density around
the electron is much higher than the bulk value. The
prediction of such clustering is not without precedence.
Anionic clusters of xenon atoms are known to form exper-
imentally [35]. Enhanced electron-solvent correlation are
also observed in simulation of excess electrons in xenon
[14(c)]. We further note that more pronounced local sol-
vent structures exist near the electron at high solvent
densities.

Another quantity of interest is the average number of
solvent atoms correlated with the excess electron,

Neorr = -—47r/ dr rzhes(r)
0

= —w(0)é(0)x(0). (4.10)
Equations (4.10), (A8), and (A14) imply that asymptoti-
cally the sign of N, is entirely determined by the func-
tion V[p; u(r)] in both the strong-coupling and the weak-
coupling regime. A negative value for Ncorr (e.g., near
the pure excluded volume limit, where V[p;u(r)] = 1) in-
dicates the interaction is mainly of the excluded volume
type. Conversely, if { is sufficiently large, V[p; u(r)] be-
comes negative in sign, which is the signature of systems
where attractive forces dominate.

Keep in mind that one cannot distinguish between
strong-coupling and weak-coupling behavior by looking
at hes(r) alone. The correlation holes and enhanced
electron-solvent correlations persist even in the weak-
coupling regime. hes(r) indicates only whether attractive
or repulsive interaction dominates. The same is true for
Neorr. At sufficiently low temperature, however, sharp
changes in hes(r)’s accompany the sharp crossover be-
tween the different regimes. This will be clearly dis-
cernible if hes(r) is plot over a range of densities or tem-
peratures.

For physical systems, U is a function of the electron-
solvent pseudopotential and does not change drastically
with thermodynamic conditions. To study the effect of
solvent density on excess electrons for a particular sol-
vent we assume U to be constant [36]. Suppose for a
given U there exists a density p* at which |V[p;u(r)]|
has a minimum small enough to place the system in the
weak-coupling regime. As p is tuned away from p*, the
tendency for strong-coupling behavior increases. In other
words, the function V[p;u(r)] determines the feasibility
of nonmonotonic equilibrium behavior of the electron-
solvent system as a function of solvent density p. This is
the concrete statement regarding the “cancellation” be-
tween attractive and repulsive interactions in our theory.

The quantitative predictions of this theory will not
hold at arbitrarily strong attractive interactions for real
physical fluids, as the fluid must cease to respond har-
monically to sufficiently strong perturbations. The peak

height near r = [ in hes(r) can be taken as a measure of
the departure of the local solvent density from its bulk
value. An unphysically large peak may be a signature
of artifacts due to the approximate nature of the theory.
This theory certainly fails for charge-dipole or unscreened
Coulombic interaction between electron and solvent (see
Appendix B). It is most accurate for long-ranged attrac-
tive potential, and also at high solvent densities at which
the small compressibility limits density fluctuations and
makes the Gaussian bath assumption valid.

D. Mobility in weak-coupling regimes

The analytic tools developed previously also give a sim-
ple expression for the position of the mobility peak. Fol-
lowing Ref. [10], at high mobility we make the free elec-
tron approximation in Eq. (2.20),

gfree(t — iBh/2) = (A?/2)[1/4 + (t/BR)?).

With this functional form, the t integral in Eq. (2.22) can
be performed explicitly, and we obtain, via Egs. (2.21)
and

(4.11)

1 Bh * 2,2
— = dk k35 (k)e 2 /8, 4.12
D 67r\/27r)\/0 o(k)e (4.12)
At large A we obtain
= = —(8v2/3n%/3) (BR/ N )i ko) + ONF),  (4.13)

where ko = 2v/3/).

Our weak-coupling mobility result is analogous to the
Cohen-Lekner result [37] for drift velocity of excess elec-
trons, but with a “scattering length” generalized; our
expression is reminiscent of the Basak and Cohen the-
ory [38] in its dependence upon the structure of the fluid.
Experimental data exhibiting this mobility maximum has
been successfully fit by Simon et al. [39] employing a the-
ory perhaps not inconsistent with this consensus. The
maximum mobility as a function of V[p; u(r)] occurs ap-
proximately at the density where

¥ (ko) =~ 9(0)

x V]p;u(r)] = 0. (4.14)
Further, the discussion at the end of the last subsection
implies that if for a given U/, a sharp minimum exists in
V]p;u(r)] as a function of p then electron mobility will
exhibit a peak as a function of p. Since V[p;u(r)] is in-
dependent of A, we predict no temperature dependence
on the position of the peak at sufficiently low tempera-
tures. The peak position as a function of temperature has
not been systematically studied by experiment. Limited
examination indicates only a slight temperature depen-
dence for excess electrons in neopentane (Fig. 2.14b in
Ref. [1(c)]).

Figure 7 displays a few slices of the U-p-A phase dia-
gram as well as the lines of maximum mobility as pre-
dicted by Eq. (4.14). The boundaries are computed from
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FIG. 7. Slices of the three-dimensional phase diagram cal-
culated with a truncated u(r) = —a/2r* attractive potential
(see text). The solid curves are the phase boundaries sepa-
rating the weak-coupling (wc) regimes and the cluster (c) and
bubble (b) states. The dashed line is the line of maximum
mobility [Eq.(4.14) in text].

Eq. (4.8). Here “b” refers to the cavity or “bubble”
phase, “c” is the cluster phase, and “wc” denotes the
weak-coupling regime. Higher solvent density not only
narrows the weak-coupling region but also shifts it (as
well as the location of the line of maximum mobility) to
higher values of U [36].

From both Figs. 5 and 7, we see re-entrant behav-
ior as a function of p with A and U fixed. For example,
the system goes from the “cluster” state to the weak-
coupling regime and back again as p increases. This im-
plies that the equilibrium size of the electron is a non-
monotonic function of density along certain isotherms in
phase space, which is again indicative of the nontrivial
competition between attractive and repulsive parts of the
electron-solvent interaction.

V. CONCLUSION

In this paper we have arrived at approximate analyti-
cal expressions that describe the phase diagram and pre-
dict the location of maximum mobility. We have demon-
strated that the RISM-polaron theory reproduces the
correct Lifshitz trap scalings in the case of excluded vol-
ume interactions. For interactions dominated by effective
attractive forces we predict a new type of Lifshitz trap
behavior whereby the electron is localized in clusters of
high solvent density. We believe that such cluster states
should play a role in the correct interpretation of mobility
experiments for highly polarizable fluids such as krypton,

2861

xenon, and certain organic fluids.

The RISM-polaron theory assumes a Gaussian bath.
Such a model for the solvent in principle allows arbitrarily
large density fluctuations, and, even when solvent-solvent
correlation is taken into account through the static struc-
ture factor, this model is incapable of rigorously enforc-
ing the solvent-solvent exclusion. For such a model bath,
and for purely attractive interactions between electron
and solvent [i.e., no excluded volume interaction, ! = 0,
with u(r) integrable], the electron size would be small
at sufficiently low temperatures for a given u(r). The
situation is similar to the problem of a quantum particle
in a system of random uncorrelated attractors studied by
Luttinger and Waxler [31]—the lowest lying states would
be centered around small, dense clusters of attractors. As
a result, our asymptotic arguments based on separation
of length scales no longer apply, and there would be no
Lifshitz-like scaling. This can be directly deduced from
Eq. (4.8), which cannot be satisfied for { = 0.

Our theory predicts that, in a statistical sense,
the presence of excluded volume interaction between
electron and solvent prevents the formation of small,
energetically-favorable cluster states and prevents the
collapse of the excess electron. The repulsive part of
the potential provides the “restoring force” that gives
rise to an excess pressure, just as in the case with pure
excluded volume interaction, resulting in a Lifshitz-like
scaling. This prediction is irrespective of the structure of
the solvent and also applies to an ideal gas solvent, in so
far as the density fluctuations in an ideal gas can be ad-
equately described as Gaussian. The crucial assumption
seems to lie in approximating the solvent density fluctu-
ation as Gaussian. It is expected that this assumption
holds for incompressible systems in general, and also (for
cluster states) in cases where the attractive part of the
electron-solvent interaction is small enough that its ef-
fect on the solvent can be treated perturbatively, but is
sufficiently large to cause formation of cluster states with
Lifshitz-like scaling.
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APPENDIX A: ANALYTIC SOLUTION IN
ASYMPTOTIC LIMIT

In this Appendix, we discuss the mathematical analysis
used to derive the analytical solutions to Egs. (2.4)-(2.6)
and (2.14)—(2.18).

We consider the most general case, in which ¢(r) con-
tains an attractive tail contribution, —Bu(r). We recover
the pure excluded volume result in the end by setting u(r)
to zero. Consider the strong-coupling ansatz in Eq. (3.7).
For 7, = 23ha? /)2,
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) =~ /\27/2, for0<7<mor(Bhi—-7)<T<ph

&) =~ a?, form <7< (BR — 11). (A1)

We anticipate that ¢ < A in the strong-coupling limit
(see Fig. 2), and we will demonstrate that this is in-
deed a self-consistent assumption. Given this inequality,
71/Bh <« 1, and the crossover described by Eq. (A1) is
sharp. We can in effect write

2 27.
exp[—k?¢(1)] = exp(—k?a?) + exp [_ kzgﬁ (1 B 5Lﬁ>}

(A2)
when performing k and 7 integrations. At low tempera-

tures we use

sin kl

kl

é(k) = cs 22 _ Bak). (A3)

(See Appendix B.) cs is then determined by extremizing
the following RISM functional [4]:

o
—_— = O
Bes Irism =0, (A4)

where

Inism = pé(0) + (p/4m>Bh)
T ok [7 ar B m)Ske . (as
dk k 7).
< [ ani [ aremswe (A5)

0

Applying Eq. (A2) to the 7 integral above gives

1 Bh &2 2 2 4
—k%¢(r) _ —FK‘a
/0 dre =e +k2)\2’

plus terms of higher order in 1/A. Eq. (A6) is substituted
into Eq. (A5). We note that &(k) and S(k) varies slowly
compared with the first term of Eq. (A6) and can be ap-
proximated by their zero wavevector values. The correc-
tions are of order (I/a) and (0/a) and are neglected. The
second term of Eq. (A6) is evaluated explicitly. Solving
Eq. (A5) with these approximations gives

(A6)

cs = —8w%/28(0)"1[(1 + BU)a® + 5(0) A2 U/8/7|

x[1+ 8v/7Ka®/5(0)A21] 7, (A7)

where K, U, and B are defined in Egs. (3.4),

(4.2), and (4.3), respectively. From the definition of é(k),

it follows that

&(0) = —87%25(0)1aV[p; u(r)]

x[1+8y/mKa®/S§(0)A\%]71, (A8)
where V[p;u(r)] is defined by Eq. (4.6). Equation (3.8)
is obtained by setting U = 0.

Next, we compute BA piref + {Sref[r(7)])res. Performing
the Gaussian functional integral over S;.f[r(7)] yields

IBAuref"‘" <Sref[r(T)])ref

=3) [1n/(BmeQ + ) — In(BmeQ + 7)) (A9)

n=0

Equation (3.7) allows us to invert Eq. (2.14) explicitly,
giving

Yo = A?/4a* (A10)
plus negligible corrections. With this expression for vy,
Eq. (A9) reduces to Eq. (3.9). Finally,

(S1)ret = Ir1sM

is computed by performing 7 and k integrations as before,
and by applying Eq. (A8).

Putting all the terms together, the chemical potential
becomes

BAu(a) = [47%2pS(0) (1 + BU)%a® + mpX2l(1 + BUU
—ng)\Zluz](l +8y/wKa®/S(0)A%)~!

+pGA% + pBa(0) + X

8a2’

where G is defined in Eq. (4.4). When U vanishes,

Eq. (A11) becomes identical to Eq. (3.11). Minimizing

the above expression for the chemical potential with re-

spect to the parameter a gives a sixth-order polynomial
equation in a:

(A11)

167%/2pV[p; u(r)]2a® /S (0)A?

~[1+87Y/2Ka®/S(0)A%1)? = 0. (A12)

In the asymptotic region, a ~ A%5. Our assumption
about the relative magnitudes of a and A is therefore
self-consistent. By keeping only lowest order terms in
(a/)) we recover the Lifshitz-type scaling in Eq. (4.5),
which reduces to Eq. (3.14) when U = 0.

Identical results can also be obtained in the strong-
coupling regime by using a single harmonic oscillator ref-
erence action with frequency w, = A%/2a2. The specific
form of the ansatz is unimportant as long as it has the
correct long time and short time behavior.

A brief note on the approximations used in this Ap-
pendix suffices. All these equations are correct to the
lowest order of (I/a), (¢/a), (Ly/a), (I/A), (¢/X), and
(L./A), where L, is the length scale of u(r). In addi-
tion, they are correct to all orders of (a/A) in so far as
Eq. (A2) holds. We do not truncate our expressions to
a finite order in (a/\) because it is nontrivial to esti-
mate the corrections that go into Eq. (A2), and also be-
cause our expression for a interpolates successfully into
the crossover region (again, see Fig. 2).

The preceding discussions apply only for the strong-
coupling regimes. In the weak-coupling regime, there is
no ground state dominance, and £(7) is well approxi-
mated by Eq. (3.1) at short times. Substituting Eq. (3.1)
into Eq. (A5) and using Eq. (A3) for ¢(r) we obtain

cs = —mA%l[1 + BU] /K, (A13)
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and

&(0) = —mA2IV[p; u(r)] /K, (A14)

as well as Eq. (4.1). For the pure excluded volume inter-
action problem, U and G vanish, and we recover Eq. (3.3).

APPENDIX B: FUNCTIONAL FORM OF c(r)

We show that either in the weak coupling regime or
as A becomes much larger than all other length scales,
a ¢ function form for ¢(r) is the correct solution that
satisfies the core condition for the electron-solvent pair
correlation function [Eq. (2.4)]. A direct corollary of this
argument is that c(r) is also adequately represented by
a d-function term in the strong-coupling regime. This is
because, from Eq. (A2), w(r) can be written as

w(r) = (mA%r) "L exp (—2r%/)?)
+(87%/2a%) ! exp(—r%/4a?)

in the latter regime. It can easily be shown that the
second term smears out all functions of length scales [,

l r+r'
—ﬂ/ dr' r'c;(r')/
[r—'|

hes(r) =

r+r' ' tr
+_/ dr' ' Cl dr" n / dr mph (T‘"')/
|r—r'| -

+__ / dr IBu(," )] /r d " " / d " I// (TI/I) /r +r dT/”I r”"w
lr—r'| [rre—pire)|

= hy(r) + ho(r) + ha(r) + ha(r).

Expanding w(r) to O(A

r+r' 1 r+r' 2 12
/ dr'" " ( //) — > dr'" e~ 2" /A
| TA2 Jp—r]

~ 2min(r,r’)/mA2.

~2), we obtain

r—r|

(B2)

Using this approximation, corrections to Eq. (B1) are of
order 1/ or smaller for u(r) decaying as r—* or faster.
We find, for r < [,

4 i cj [lz [—ipit2
=it2 J+3

ha(r) = 7rA21
4 * ! 17 !
ha(r) = E/ dr' '[~Bu()] = n
ha(r) = 2 L6+ 417
87rp 6xl3 I5
3/\220 [J+3 J+5+

l3r2

i+3)

and

rrrtale) + 2 [ art - pur)] /['+
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and to leading order is independent of the form of ¢(r).
Consequently, it is again the free electron form for w(r)
that determines the form of c(r) at short range in the
strong-coupling regime.

We assume that ¢(r) consists of a § function and an
analytic part for r < I:

c(r) =¢ql(r), r<li,

1 = ,
cs 5 0(r =)+ Y es(r/l), r <1

i=0

This assumption is self-consistent under conditions de-
scribed below. We start from Eq. (2.4) with

c(r) =qa(r), r <,
e(r) = —Bu(r), r > 1,
w(r) = (Tr/\zr)‘lexp(—2r2//\2),
8(r) + phes(r),

x(r)/p= 4—7rlr—2

with hg(r) being the bulk solvent-solvent pair correla-
tion function, and derive conditions for ¢;(r) that satisfy
Egs. (2.4) and (2.5). We rewrite Eq. (2.4) as

d,rll " "
r—r'| ( )
m

drllll 7'””(41 (TIIII)

(TIIII)
(B1)

+
/ d W _/: dr” ”Phas( )a

(B3)
where
K= /0 = ' hes ('), (B4)
and
wir) = [ " ar / Tar [puG. (BY)

From Eq. (B3), it is seen that u(r) must decay faster than
r~2. Slower decay causes 7 to diverge.

To satisfy the core condition, Eq. (2.5), the coeffients
for terms of O(r™) for positive integers n must vanish.
Provided that u(r) = 0 (pure excluded volume interac-
tion) or hgs = 0 (ideal gas limit), we deduce that, to
zeroth order in A~1,

c(r) = (cs/4mr?)é(r — 1) + co, T < 1,
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and
co = pcs /(1 — 4mpl®/3).

Furthermore, notice that ¢(r) enters into the calculation
of the partition function via Eq. (2.10). Since the Fourier
transform of the § function is much longer ranged than
that of the step function, at all reasonable densities the
contribution of the cy term is no more than a few percent.
This has been verified numerically for all cases of A > 100
that we studied. Hence, we ignore the step-function term.

The last piece of Eq. (B3) cannot be expressed in closed
form and is a nontrivial functional of u(r). Indeed, in
general this term is not an analytic function of r for r < [,
and our assumption for ¢;(r) no longer holds. However,
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at low densities, and also for u(r) that are of length scales
much larger than o, the contribution of h(r) should be
much greater than that from h4(r). This is evident if we
rewrite hy(r) as follows:

2 *° PP

ha(r) = _7_13/\—5;./; dkksin(kr) X (k)hss(k),

where X (r) = W(r)/r. This expression gives a constant
with corrections in terms of (r/o) and (r/L,), with L,
being the length scale of the attractive potential. Ana-
lytically we cannot prove that these corrections are neg-
ligible for a general function u(r), but empirically we
find that the §-function ansatz is justified for all cases of

A > 100 that we studied.
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